首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24229篇
  免费   3309篇
  国内免费   2512篇
电工技术   1896篇
技术理论   1篇
综合类   3524篇
化学工业   1968篇
金属工艺   1873篇
机械仪表   1741篇
建筑科学   678篇
矿业工程   339篇
能源动力   289篇
轻工业   739篇
水利工程   196篇
石油天然气   339篇
武器工业   314篇
无线电   2947篇
一般工业技术   4276篇
冶金工业   494篇
原子能技术   172篇
自动化技术   8264篇
  2024年   42篇
  2023年   328篇
  2022年   520篇
  2021年   710篇
  2020年   737篇
  2019年   799篇
  2018年   719篇
  2017年   972篇
  2016年   990篇
  2015年   1186篇
  2014年   1534篇
  2013年   1833篇
  2012年   1759篇
  2011年   1840篇
  2010年   1506篇
  2009年   1674篇
  2008年   1512篇
  2007年   1739篇
  2006年   1456篇
  2005年   1281篇
  2004年   1080篇
  2003年   864篇
  2002年   704篇
  2001年   661篇
  2000年   562篇
  1999年   469篇
  1998年   390篇
  1997年   334篇
  1996年   303篇
  1995年   307篇
  1994年   253篇
  1993年   218篇
  1992年   169篇
  1991年   132篇
  1990年   116篇
  1989年   84篇
  1988年   65篇
  1987年   40篇
  1986年   25篇
  1985年   22篇
  1984年   19篇
  1983年   21篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Biohydrogen obtained from purple non sulfur bacteria (PNSB) is an environmentally friendly alternative for hydrogen production. PNSB can be employed in large scale outdoor photobioreactors to produce hydrogen by photofermentation with sunlight as the light source. In external environmental conditions, however, bacteria can experience stress due to high light intensities, which can inhibit or slow down hydrogen production. Previous studies with other PNSB showed varying responses to light intensities (above 4000 lux), in some cases improving, and in others adversely affecting hydrogen production.In this study, Rhodobacter capsulatus, a PNSB species that produce hydrogen efficiently from dark fermenter effluents containing acetate, was used to investigate the effects of high light intensity stress on the hydrogen production metabolism at the gene expression level. A microarray analysis was carried out using a custom-design Affymetrix GeneChip TR_RCH2a520699F. R. capsulatus DSM1710 was grown under a cyclic illumination of 2000 and 7000 lux (12 h light/12 h dark) in a hydrogen production medium having 30 mM acetate and 2 mM glutamate, and was exposed to a high light intensity (10,000 lux) for 1 h in the middle of a light period. The results reveal that photosynthetic reaction center genes were down-regulated in order to protect the photosynthetic membrane from damage. On the other hand, the expression of nitrogenase and electron transport system genes were enhanced by high light intensity. These results show that a high light intensity stress drives R. capsulatus to direct gene expression towards hydrogen production, which supports the hypothesis that hydrogen production is a way for the disposal of excess reducing equivalents to maintain the internal redox balance.  相似文献   
82.
In this study, the deformable titanium (Ti) particles reinforced AZ91 composite was successfully prepared by powder metallurgy and subsequent extrusion. The mechanical properties and microstructural evolution of pure AZ91 and 5Ti/AZ91 composite were studied. The yield strength, ultimate tensile strength, and elongation of 5Ti/AZ91 composite are measured to be 212 MPa, 323 MPa, and 10.1%, respectively. Microstructure analysis revealed that Ti particles are elongated along the extrusion direction, forming a discontinuous strip Ti particles, fine precipitated Mg17Al12 phase inhibits dynamic recrystallization (DRX) behavior through Zener pinning effect and hinders the growth of matrix grains, resulting in refiner grains of 5Ti/AZ91 composite. Heterogeneous deformed Ti particles and magnesium (Mg) matrix to generate additional heterogeneous deformation-induced (HDI) strengthening. Heterogeneous deformation-induced strengthening mainly contributed to the increment of yield strength for 5Ti/AZ91 composite.  相似文献   
83.
Recently, ceramic matrix composites reinforced by short carbon fibers (CFs) attracted increasing attentions. To further improve mechanical properties and oxidation resistances, CFs were subjected to oxidation and acidification followed by sol-gel dip-coating to deposit ZrO2 on their surfaces. ZrO2-Cf/SiC composites were fabricated by joint hot compression molding and sintering, compared to Cf/SiC and SiC prepared by the same method. Microstructural analyses indicated that ZrO2 coatings were successfully deposited on CF surfaces, formed strong bonding and interfaces between CF and the matrix. Meanwhile, CFs were found uniformly distributed in SiC matrix with random orientations. Flexural curves of ZrO2-Cf/SiC and Cf/SiC revealed the presence of “false plasticity” regions after sharp drops, which were quite different from brittle flexural behavior of SiC ceramic. Compression strength of the three samples showed step-up growth. ZrO2-Cf/SiC exhibited the highest value, indicating the introduction of CFs and ZrO2 coatings do have great influence on mechanical performances. After heat treatment, ZrO2-Cf/SiC exhibited better oxidation resistance than Cf/SiC, with weight loss ratios estimated to ??3.76% and ??6.43%, respectively. These improved properties indicated that ZrO2-Cf/SiC would be excellent alternatives to other existence materials under ultra-high temperature environments.  相似文献   
84.
Low-loss (Zn1-xNix)ZrNbTaO8 (0.02?≤?x?≤?0.10) ceramics possessing single wolframite structure are initiatively synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is used to establish the correlation between structural characteristics and microwave performance in this ceramic system. A small amount of Ni2+ (x?=?0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually raise the Q?×?f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The (Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150?°C for 3?h exhibits an outstanding combination of microwave dielectric properties: εr =?27.88, Q?×?f?=?128,951?GHz, τf =?–39.9?ppm/°C. Thus, it is considered to be a candidate material for the communication device applications at high frequency.  相似文献   
85.
Steel materials suffer extensive creep by the application at temperatures of about 700?°C and pressures about 350?bar in a power plant environment. The presented concept overwraps a steel pipe with a ceramic matrix composite (CMC) jacket in order to support the steel pipe and provide high temperature strength. Finite Element simulations show the influence of the wall thickness of CMC jacket and the coefficient of thermal expansion (CTE) on circumferential stresses within the hybrid metal ceramic pipe. Suitable fiber and matrix materials were studied, composites fabricated and mechanical properties determined. Finally, a prototype was designed in order to confirm the feasibility of the concept. The lifetime of a pure steel pipe was increased by more than four-fold by the additional CMC jacket.  相似文献   
86.
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This study evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-NicalonTM Type S SiC fiber, following neutron irradiation at 319 and 629?°C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319?°C, the quasi-ductile fracture behavior of the nonirradiated composite became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. The specimens irradiated at 629?°C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.  相似文献   
87.
A novel mullite-bonded SiC-whisker-reinforced SiC matrix composite (SiCw/SiC, SiC whisker-to-SiC powder mass ratio of 1:9) was designed and successfully prepared. Before preparing the composite, the inexpensive lab-made SiCw was first modified by an oxidation/leaching process and then coated with Al2O3. The kinetics results indicate that the oxidation process can be described by improved shrinking-cylinder models. The aspect ratio of SiCw improved after modification. Subsequently, raw materials with a SiC–SiO2–Al2O3 triple-layered structure were obtained after the Al2O3-coating process and used as feedstocks during the subsequent hot-pressing sintering. Finally, the characterization of the composites indicates that the mullite-bonded sample performs better (relative density of 93.8?±?1.4%, flexural strength of 533.3?±?18.2?MPa, fracture toughness of 13.6?±?2.1?MPa?m1/2, and Vickers hardness of 20.6?±?2.5?GPa) than the reference sample without the mullite interface. The improved toughness could essentially be attributed to the moderately strong interface bonding and effective load transfer effects of the mullite interface.  相似文献   
88.
With the development of parallel computing architectures, larger and more complex finite element analyses (FEA) are being performed with higher accuracy and smaller execution times. Graphics processing units (GPUs) are one of the major contributors of this computational breakthrough. This work presents a three-stage GPU-based FEA matrix generation strategy with the key idea of decoupling the computation of global matrix indices and values by use of a novel data structure referred to as the neighbor matrix. The first stage computes the neighbor matrix on the GPU based on the unstructured mesh. Using this neighbor matrix, the indices and values of the global matrix are computed separately in the second and third stages. The neighbor matrix is computed for three different element types. Two versions for performing numerical integration and assembly in the same or separate kernels are implemented and simulations are run for different mesh sizes having up to three million degrees of freedom on a single GPU. Comparison with GPU-based parallel implementation from the literature reveals speedup ranging from 4× to 6× for the proposed workload division strategy. Furthermore, the same kernel implementation is found to outperform the separate kernel implementation by 70% to 150% for different element types.  相似文献   
89.
为了精确地配准近平面场景下的红外-可见光视频序列,本文提出了一种基于轮廓特征匹配的自动配准方法,通过迭代匹配目标轮廓特征来解决异源图像中配准特征的提取和匹配难题。首先,采用运动目标检测技术获取目标轮廓,并由曲率尺度空间(CSS)角点检测算法提取轮廓特征点。此后,建立全局形状上下文描述子和局部边缘方向直方图描述子描述特征,从而实现可靠的特征匹配。来自不同时刻的匹配点对被保存在一个基于高斯距离准则的特征匹配库中。最后,为了克服近平面场景中目标深度变化的影响,本文结合前景样本随机抽样策略计算配准矩阵的损失函数,完成对全局配准矩阵的更新。在LITIV数据库上对方法进行实验验证,结果表明本文方法的配准精度优于当前先进的对比方法,在9个测试视频上的平均重叠率误差仅为0.194,与对比方法相比下降了18.5%。基本满足了近平面场景下红外-可见光视频序列配准的精度要求,且具有较高的鲁棒性。  相似文献   
90.
广义逆矩阵理论被广泛应用于不稳定结构的形态分析。不稳定结构在荷载作用下,其形状会发生变化直至其势能达到最低,此时的结构处于无弯矩的平衡状态。根据该原理并结合广义逆矩阵理论提出一种适用于杆系结构的形态创构方法。该方法将杆系模型中杆单元进行分组,在每一组中杆单元总长度不变的条件下,建立控制结构形状变化的移形方程。利用广义逆矩阵理论和势能梯度确定使模型势能下降最快的方向,并逐步调整节点位置直至势能达到最低。临时单元和单元组的引入使得该方法可以应用于多种形式结构的形态创构,合理地设置单元组和临时单元可以实现单元长度与单元内力的重新分配进而实现诸多功能。算例分析说明该方法的特性并验证其有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号